

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

	CANDIDATE NAME		
	CENTRE NUMBER		CANDIDATE NUMBER
х л л л л л 2 0 0 0 0	CHEMISTRY		9701/35
ω 	Advanced Practic	cal Skills 1	October/November 2011
л			2 hours
0	Candidates answ	ver on the Question Paper.	
0 	Additional Materi	ials: As listed in the Confidential Instructions	
*	READ THESE IN	ISTRUCTIONS FIRST	

Write your Centre number, candidate number and name on all the work you hand in.
Give details of the practical session and laboratory where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer **all** questions.

You may lose marks if you do not show your working or if you do not use appropriate units. Use of a Data Booklet is unnecessary.

Qualitative Analysis Notes are printed on pages 11 and 12.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

Session	
Laboratory	

For Examiner's Use	
1	
2	
Total	

This document consists of **10** printed pages and **2** blank pages.

For Examiner's

Use

You are required to investigate the effect of temperature on the rate of reaction of 1 peroxydisulfate ions with iodide ions. Iodide ions are oxidised to iodine by peroxydisulfate ions.

 $S_2O_8^{2-}(aq) + 2I^{-}(aq) \rightarrow 2SO_4^{2-}(aq) + I_2(aq)$

FA 1 is aqueous potassium peroxydisulfate, $K_2S_2O_8$.

FA 2 is an aqueous solution containing a mixture of potassium iodide, KI, sodium thiosulfate, $Na_2S_2O_3$, and starch.

When FA 1 and FA 2 are mixed together the potassium peroxydisulfate reacts with the potassium iodide to make iodine. As soon as this iodine is formed, it reacts with the sodium thiosulfate and is turned back into iodide ions. Only when all the sodium thiosulfate has reacted does iodine remain in the solution. The solution then turns blue-black because of the presence of the starch indicator. The rate of reaction can be determined by the time it takes for a blue-black colour to first appear in the colourless mixture.

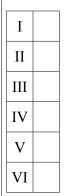
(a) Method

Read through the method and prepare a table on page 3 to record the initial and final temperatures and the reaction time for each experiment, before starting any practical work.

- Half-fill a 250 cm³ beaker with water to act as a water bath. •
- Place it on a tripod and gauze and heat it with a Bunsen burner to about 65 °C then remove the Bunsen. While your water is being heated continue with the following steps of the method.
- Fill the burette, labelled **FA 1**, with the aqueous potassium peroxydisulfate, **FA 1**. •
- Fill the burette, labelled FA 2, with the mixture of solutions, FA 2.
- Measure 10.0 cm^3 of **FA 1** into a boiling tube.
- Measure 10.0 cm³ of **FA 2** into a second boiling tube.
- Place both boiling tubes in the water bath.
- Clamp one of the tubes and place a thermometer in this tube.
- When the temperature of this solution has reached about 60 °C, pour the contents of the second tube into the clamped tube. Start timing immediately, note the temperature and stir the mixture.
- Record this initial temperature.
- Stop timing as soon as the blue-black colour appears. Record this reaction time to the **nearest second** and record the final temperature.
- Repeat the experiment at decreasing temperatures as many times as necessary to generate data for plotting a graph. The experiment should not be performed at a temperature below about 30 °C. The temperature of the water bath may be adjusted by adding cold water or by reheating. (Boiling tubes may be rinsed and reused.)

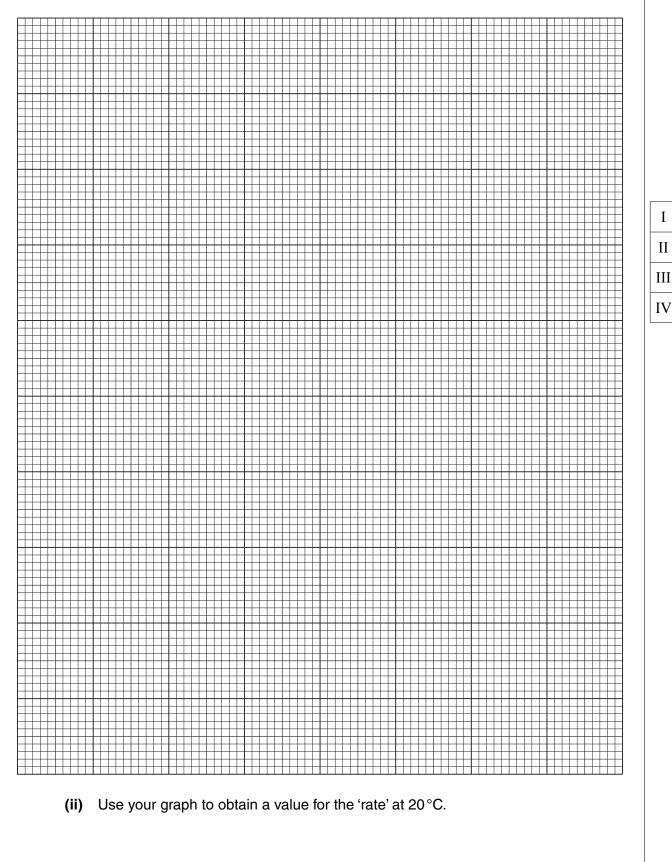
https://xtremepape.rs/

[5]


(b) The rate of reaction for each experiment can be represented by the following.

'rate' = $\frac{1000}{\text{reaction time in seconds}}$

3


Complete the following table for each of your experiments. The mean temperature is the average of the initial and final temperature for the experiment.

mean temperature / °C	'rate'

(c) (i) Using your values in (b), plot a graph of 'rate' (*y*-axis) against mean temperature (*x*-axis). Choose suitable scales to allow you to extrapolate the graph to include the 'rate' at 20 °C.

For Examiner's Use

https://xtremepape.rs/

For

Use

2 Qualitative analysis

At each stage of any test you are to record details of the following.

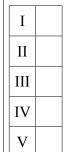
- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, **described in the appropriate place in your observations**.

You should indicate clearly at what stage in a test a change occurs. Marks are **not** given for chemical equations. **No additional tests for ions present should be attempted.**

If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.


Where reagents are selected for use in a test the full name or correct formula of the reagents must be given.

FA 3, **FA 4** and **FA 5** are aqueous solutions containing one cation and one anion. One of these solutions is a dilute acid and this is the only acid present.

(a) (i) Select a single chemical reagent from those supplied which would allow you to identify the dilute acid. You may not use indicator paper.

reagent

(ii) Use this reagent to test all three solutions and record your results in an appropriate form in the space below.

(iii) From your observations in (ii), identify which solution is the dilute acid.

FA is the dilute acid.

https://xtremepape.rs/

For Examiner's Use

test	observations
To 1 cm depth of FA 3 in a test-tube, add 1 cm depth of FA 4 , then	
add excess hydrochloric acid.	
To 1 cm depth of FA 4 in a test-tube, add 1 cm depth of FA 5 , then	
add excess hydrochloric acid.	
To 1 cm depth of FA 5 in a test-tube, add 1 cm depth of FA 3 , then	
add excess hydrochloric acid.	

7

For Examiner's Use

Ι	
II	
III	
IV	

[4]

(c) For the two unidentified solutions, complete the following table.

test	observations			
	FA	FA		
To 1 cm depth of unknown in a boiling tube, add NaOH(aq)				
warm the tube carefully				

[2]

(d) From your observations in (a), (b) and (c), identify the ions present in the two solutions tested in (c), giving the relevant evidence for each. If you have not been able to identify one or more of the ions, explain why the evidence obtained was insufficient.

For Examiner's Use

Ι

Π

III

IV

	FA	cation	evidence				
		anion	evidence				
							[4]
(e)		ne aqueous anion its identification?		bromide,	what wou	ld be the m	ninimum evidence
							[1]
							[Total: 16]

BLANK PAGE

9

BLANK PAGE

10

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

ion	reaction with				
ion	NaOH(aq)	NH ₃ (aq)			
aluminium, Al ³⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess			
ammonium, NH ₄ +(aq)	no ppt. ammonia produced on heating	_			
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.			
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.			
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess			
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution			
iron(II), Fe ²⁺ (aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess			
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess			
lead(II), Pb ²⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess			
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess			
manganese(II), Mn ²⁺ (aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess			
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess			

[Lead(II) ions can be distinguished from aluminium ions by the insolubility of lead(II) chloride.]

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chromate(VI), CrO ₄ ^{2–} (aq)	yellow solution turns orange with H ⁺ (aq); gives yellow ppt. with Ba ²⁺ (aq); gives bright yellow ppt. with Pb ²⁺ (aq)
chloride, C <i>l</i> [_] (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq)); gives white ppt. with Pb ²⁺ (aq)
bromide, Br [–] (aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in $NH_3(aq)$); gives white ppt. with $Pb^{2+}(aq)$
iodide, I [_] (aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq)); gives yellow ppt. with Pb ²⁺ (aq)
nitrate, NO ₃ ⁻(aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil
nitrite, NO ₂ ⁻ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil, NO liberated by dilute acids (colourless NO \rightarrow (pale) brown NO ₂ in air)
sulfate, SO ₄ ^{2–} (aq)	gives white ppt. with Ba ²⁺ (aq) or with Pb ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ^{2–} (aq)	SO ₂ liberated with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl_2	bleaches damp litmus paper
hydrogen, H ₂	"pops" with a lighted splint
oxygen, O ₂	relights a glowing splint
sulfur dioxide, SO ₂	turns potassium dichromate(VI) (aq) from orange to green